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SUPPLEMENTAL MATERIALS 

OI-RD Scanning Microscope Control 

Microscope control, data acquisition, image processing/analysis, binding curve 

processing/analysis (nonlinear curve fitting), and report generation are performed with a custom 

application suite developed in LabVIEW 7 (National Instruments, Austin, TX) by ourselves. 

Microarray Printing Conditions 

The microarrays were printed at ambient temperature (~ 25°C) and elevated relative humidity 

(~ 65%).  The target materials were dissolved in 1 PBS (pH 7.5) to desired concentrations for 

printing. Primary amines on the target protein surface bind covalently to the epoxide groups on the 

glass surface. The printing robot was equipped with eight silicon 100 μm quill pins (Parallel 

Synthesis, Santa Clara, CA). The centers of the printed spots were separated by 250 m and the 

diameters of the spots varied from 80 m to 160 m depending on the concentration and the wetting 

properties of the printed solution. The printed microarrays were stored in a slide box for a minimum 

of 12 hours before further processing. 

aK  Maps of Eight Protein Probes Against the 10,880-spot Target Microarrays Shown in Fig. 6 

We measured binding curves of eight protein probes against the 10,880-spot target 

microarray (Figure 6) by sequentially exposing the microarray to solutions of these probes at one 
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concentration. In order of reactions, the 8 protein probes were anti-phenobarbital IgG, concanavalin 

A (lectin), anti-theophylline IgG, anti-biotin IgG, anti-tetrahydrocannabinol IgG, anti-morphine IgG, 

anti-dinitrophenol IgG, and anti-methamphetamine IgG. We repeated the reaction sequence with 

different probe concentrations on fresh microarrays to obtain 10,880 sets of binding curves for each 

printed target. Figure S-1 through Figure S-8 display Ka maps (equilibrium association constants) of 

these eight proteins against the 10,880 targets, representative sets of binding curves for each probe, 

and the histogram of Ka for each probe against the same specific targets but printed at different 

locations. We show the means and the standard deviations of the association rates, dissociation rates, 

and equilibrium association constants of eight specific probe-target pairs in Table 1. 

It is clear that there is noticeable cross reactivity of mouse anti-theophylline IgG to 

dinitrophenol-BSA targets, albeit with an order of magnitude smaller Ka. For concanavalin A, in 

addition to specific binding to glucose-BSA targets, the protein also binds to a number of 

immobilized IgG targets. 
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FIGURE S-1 
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FIGURE S-2 
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FIGURE S-3 
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FIGURE S-4 
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FIGURE S-5 
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FIGURE S-6 
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FIGURE S-7 
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FIGURE S-8 
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TABLE S-1:   Association rates, dissociation rates, and equilibrium association constants of eight 
protein probes with respective ligands (Figure 6). The values are 68% confidence intervals obtained 
from the mean and standard deviation of a Gaussian distribution fit to a histogram of values from all 
appropriate microarray spots (several hundred spots for each reaction). Values for each spot were 
obtained from nonlinear curve fitting to the Langmuir binding reaction model. We estimate from the 
data a 68% confidence upper bound for the dissociation rate (the association and dissociation rates 
must be nonnegative) where appropriate. They are comparable in value to the available affinity 
constants for some of monoclonal mouse anti-drug IgG molecules that Fitzgerald Industries 
International, Inc. provides commercially (http://www.fitzgerald-fii.com/Products?pId=9&sId=21). 
 
 

Probe Target kon (M·s)-1 koff (s
-1) Ka (nM-1) 

anti-phenobarbital IgG phenobarbital-BSA (1.3 ± 0.1) 104 < 4.810-6 > 2.7 

concanavalin A glucose-BSA (2.3 ± 0.3) 104 (8.7 ± 0.9) 10-5 0.26 ± 0.01

 whole IgG (1.00 ± 0.07) 104 (2.2 ± 0.4) 10-5 0.45 ± 0.07

anti-theophylline IgG theophylline-BSA (3.4 ± 0.3) 104 < 2.810-6 > 11 

 dinitrophenol-BSA (3.4 ± 0.3) 104 (9 ± 3) 10-5 0.36  ± 0.01

anti-biotin IgG biotin-BSA (2.2 ± 0.2) 104 (4.5 ± 0.5) 10-5 0.53 ± 0.06

anti-tetrahydrocannabinol IgG tetrahydrocannabinol-BSA (1.1 ± 0.2) 104 < 9.110-6 > 1.2 

anti-morphine morphine-BSA (2.1 ± 0.2) 104 < 6.910-6 > 3.0 

anti-dinitrophenol dinitrophenol-BSA (1.8 ± 0.1) 104 < 7.210-6 > 2.5 

anti-methamphetamine methamphetamine-BSA (1.6 ± 0.2) 104 (2.2 ± 0.4) 10-5 0.72 ± 0.1 
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Measurement of Reflectivity Phase Difference   

In this section, we provide details on how the OI-RD microscope measures the changes in the 

reflectivity phase  , where   irr sp exptan   and pr  and sr  are the complex p-polarized and s-

polarized reflectivities, respectively.  This microscope varies in several details from previously 

reported OI-RD microscopes1-4. In particular, this microscope is designed to measure changes in   

exclusively (previous microscopes can also measure changes in  ). Since the OI-RD response with 

optically transparent substrates and protein layers is predominantly through  , the current 

microscope configuration sacrifices very little information in exchange for a simpler and more 

robust signal normalization scheme compared to previous OI-RD microscopes. However, it should 

be pointed out that the high-speed scanning mechanisms are independent of these details and 

therefore high-throughput kinetic measurements analogous to those described in the main text can be 

performed with the previous OI-RD configurations as well. 

The arrangement of the optics in the OI-RD microscope is illustrated in Figure 1 and (for 

convenience) Figure S-9 (top). A He-Ne laser beam of wavelength λ = 633 nm and linearly 

polarized at angle P (from p-polarization) passes through a photoelastic modulator (PEM). The 

photoelastic modulator acts as a waveplate with a sinusoidally varying retardation of frequency Ω = 

50 kHz and amplitude 2  (quarter wave). The axes of the PEM are aligned with the glass slide p- 

and s-polarization components.  The beam passes through a phase shifter (e.g. a wave plate tilted 

about a principal axis) that adds an adjustable but static phase PS  between the p- and s-polarized 

components. The scan lens focuses the beam into a ~ 30 µm diameter spot on the microarray-bearing 

glass surface at incidence angle  6.36  inside the glass slide. The microarray-bearing surface is 

immersed in an aqueous solution within the flow channel.  The reflected beam from the illuminated 

spot passes through an analyzer with its transmission axis set at angle A (from p-polarization) and is 

imaged with an objective lens onto a long-profile photodiode. A slit in front of the photodiode passes 

the image from the back surface reflection and blocks the images from the front surface reflection 

and from multiple bounces within the glass slide. The first and second harmonic components of the 

resulting photocurrent are measured with lock-in amplifiers. Their signed amplitudes are  
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            sysPSsp APrrHJIS   sin2sin2sin10  (S-1) 

for the first harmonic and  

            sysPSsp APrrHJIS   cos2sin2sin22 20  (S-2) 

for the second harmonic. The other symbols in these expressions are as follows: 0I  is the output 

intensity of the laser; 1J  and 2J  are Bessel functions of the first kind; H  is the frequency-dependent 

proportionality between the laser intensity amplitude at the photodiode and the measured 

photocurrent amplitude; pr  and sr  are the products of the p- and s-polarization 

reflection/transmission coefficient magnitudes for all the surfaces in the system (including the 

microarray surface);   is the phase difference between the p- and s-polarized components due to 

reflection from the microarray surface; PS  is the phase difference due to the phase shifter; and sys  

is the phase difference due to all the other components. Let     2maxmax SS  where 

         APHJIS 2sin2sin10max             APHJIS 2sin2sin22 20max   . The parameter 

  is independent of the properties of the microarray surface and can be determined by measuring the 

amplitudes of  S  and  2S  plotted as a function of PS . This only needs to be done once 

because those factors that do not divide out in the ratio remain constant throughout use of the 

microscope. With these definitions      sysPSsp rrSS   sin2max  and 

     sysPSsp rrSS  cos22 max . Next, let 0  be the phase difference for a bare (unprinted) 

region of the microarray surface. We initially adjust PS  so that 00  sysPS  (or, more 

generally, a multiple of  ), giving   0S  and     sp rrSS  22 max .  When a thin layer of 

molecules is subsequently added to the bare surface or when the focused beam is moved to a 

microarray spot, the photocurrent amplitudes become      0max 2   sp rrSS  and 

    sp rrSS  22 max . Therefore, under this “nulling” condition of the first harmonic, the phase 

difference 0   is obtained from the measured amplitudes by      2SS  . Before 

each image or real-time scan, the first harmonic is “nulled” as described above at a reference 

location on the unprinted microarray substrate. 
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FIGURE S-9 

 
 

 

 

Top panel: Optical layout of the scanning OI-RD microscope. A glass slide with a 
microarray printed on the bottom surface is installed in a flow channel assembly. A 
polarization-modulated laser beam is scanned across the microarray in the y-direction 
for y-scan with a combination of a rotating mirror and a scan lens, while the flow 
channel assembly is translated in the x-direction relative to the illumination optics for x-
scan. Middle panel: bottom view of the flow chamber assembly showing the 2 cm  4 
cm optically accessible area on the glass slide. Bottom panel: side view of the 
scanning microscope illustrating the y-scan. 
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Optimizing Spot Locations for Real-time Readout 

For fast real-time readout, it is essential that the encoded linear translation stage (x-direction in 

Figure 2 and Figure S-9) does not stop much more often than the number of columns in a 

microarray.  As a result, it is crucial that the centers of printed spots along a microarray column (fast 

scan direction, y direction) do not deviate from a straight line by more than the spot radii so that the 

fast rotating mirror raster scan can be performed at one x-coordinate per microarray column, instead 

of many x-coordinates for a single column of targets. Three factors affect this: (1) the diameter and 

morphology of printed spots, (2) the precision of the printing robot, and (3) the regularity of pin 

diameters and pin-to-pin separation in the print head. Item (1) is the most variable because it 

depends on the physicochemical properties of the glass slide surface, the printing buffer, and the 

dissolved target. For example, in the first experiment described in the main text the printed BSA 

spots had diameters ranging from 120 m to 140 m. In the second experiment, the range was even 

larger when printing concentrations were varied. By printing a large microarray with a single pin 

(data not shown), we found that the standard deviation of the spot spacing was 9 m due to robotic 

motion precision, close to the nominal 2.5 m digital encoder resolution of the OmniGrid 100 

translation motors. For high-throughput printing of many replicate microarrays (up to 100), multiple 

pins must be employed. Since a readout line needs to pass through all the spots in a column printed 

with different pins so that the encoded linear stage only needs to stop once for the row, the centers of 

the pins in the print head cannot deviate from a straight line by more than the spot radius. Typical 

stainless steel pins used in most robotic microarray printers do not have such a precise pin-to-pin 

alignment. We found that silicon pins and the associated print head from Parallel Synthesis Inc (San 

Jose, CA) had the pin-to-pin alignment precision for our application.  Our printing test showed that 

the standard deviation of spot centers printed with 8 silicon pins was 11 m, so that 99 % of the 

printed spot centers will fall within 55 m, less than one half of the spot diameter. This regularity in 

spot center position allows convenient specification of the readout grid and in turn enables high-

speed real-time readout. 
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OI-RD Image Processing 

The goal of microarray image analysis is to report the amount of probe-target complex formed 

at each spot of the microarray. For fluorescence images, this goal is achieved with the following 

strategies: (1) determine a grid for addressing each spot, (2) segment spot pixels from background 

pixels, (3) determine if a given spot location contains a valid endpoint signal, and (4) calculate the 

signal from the spot pixels and the local background.  These strategies remain the same in principle 

for OI-RD images of large microarrays, yet differ significantly in implementation. First, 

fluorescence signals are represented by non-negative values (typically unsigned 16-bit integers and 

expressed in instrument-dependent arbitrary units). The OI-RD signals may take positive and 

negative values and although the raw OI-RD signals are acquired by digitizing an analog signal (at 

16-bit resolution), the signals have an instrument-independent physical interpretation according to 

Eq. (1) (see the main text). Thus, it is most useful to process the OI-RD signals as floating-point 

values. 

A second important difference is the nature of the background signals in these two types of 

microarray images. Fluorescence, by its nature, allows sensitive discrimination of appropriately 

labeled molecules. Background from autofluorescence, nonspecific binding, and artifacts such as 

smearing of target molecules during washing steps (“comet tails”) inevitably occur, but can be 

minimized in principle by optimizing the microarray fabrication and reaction protocols. After 

gridding and segmenting spot pixels, the typical approach to quantifying fluorescence endpoints is to 

subtract an average of the local background pixels from an average of the spot pixels.  In contrast, all 

label-free optical detection methods, including OI-RD and surface plasmon resonance imaging, are 

subject to all processes that can change the phase and magnitude of a reflected optical beam. Thus, 

for OI-RD images, it is important to correct (subtract out) the background both globally and locally 

before assessing the signal of a target spot. 

The third important difference is that gridding and normalization of the spot signals are often 

the most difficult step in fluorescence image analysis. This is because the image quantifying the 

target microarray is usually unavailable; the structure of the grid and the target density of each spot 
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must be deduced from one or more probe reactions. For OI-RD images, it is routine to obtain high-

contrast images of a target microarray (either before or after washing away excess printed material) 

before reaction with a probe. As a result, the target spots are relatively easily located and gridded, 

greatly aiding the process of background correction necessary for OI-RD images (the most difficult 

step in OI-RD image analysis). We next describe the semi-automated procedures used to process OI-

RD images acquired for this study. 

 

Grid Determination 

The printed, yet unprocessed microarray is installed in the microscope and scanned. The 

reflectance signal sspp RRRR   , with 
2

pp rR   and 
2

ss rR   (available as the second harmonic 

of the polarization-modulated laser intensity in reflection), from the spots are large with almost 

negligible background. A line is drawn between the centroids of the bottom-left and bottom-right 

spots in the microarray (see Figure 3, main text) to determine the angle of the microarray relative to 

the scan axes. Angular deviations larger than one milliradian are corrected by rotating the fluidic 

chamber assembly with a flexure-tilt mechanism. 

First iteration readout grid.   Once the microarray axes are aligned with the scan axes, the 

reflectance signals sspp RRRR    are added up along the y-axis (image pixel columns) to obtain 

a comb-like profile of x-coordinates, and the same signals are added up along the x-axis (image pixel 

rows) to obtain a comb-like profile of y-coordinates. The peak positions in these two profiles mark 

the average coordinates of printed spots on a rectangular grid, albeit irregularly spaced. These 

positions are found by fitting a quadratic equation to the profile points located in a sliding window. 

The fit coefficients are tested to see if the quadratic is consistent with a local maximum of sufficient 

height and width, and if so the peak location is calculated. These peak positions in x and y 

coordinates form the first iteration of the real-time readout grid.  After the target channel pixels (grid 

points) are located, the reference channel pixels are determined by computing the midpoint between 

consecutive targets in the y (fast scan) direction; references at the edges of the arrays are positioned 

approximately half a spot spacing away. 
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Second iteration readout grid.   If there is a great deal of variability in the spot diameters and 

the locations of the spot centroids, the average coordinates as specified in the first-iteration readout 

grid can miss a significant number of target spots. In this case, we make the following adjustments: 

The reflectance image is globally binarized (with thresholds set to the global image mean ± one 

standard deviation) to segment out the spots. The image is then partitioned into rectangles centered 

on the original grid points, each containing a binarized target spot. We shift the readout coordinates 

for the spot from the geometrical center of the rectangle to the centroid of the binarized spot (if a 

spot is not present, the center of the box is used). These shifted coordinates form the second iteration 

readout grid.  Our scanning software can read out this “center-of-mass relaxed” grid in real-time, and 

the algorithm works extremely well for small microarrays. But for large microarrays with 10,000 

spots such a “center-of-mass relaxed” readout grid with a nearly random distribution of pixel 

positions is inefficient due to the large number of distinct x coordinates (up to 10,000 from less than 

200) where the encoded linear stage needs to stop. 

Third iteration readout grid.   Thus for large microarrays, we choose the median of the 

“center-of-mass relaxed” x coordinates for each column of the printed targets (parallel to y axis) as 

the x-coordinate for the entire row, thus reducing the number of distinct target x coordinates from 

potentially 10,000 back to the number of target rows. Since scanning along the y direction is 

accomplished with a fast scan mirror, the unique y values can be kept without significant increase in 

total readout time. For operational reasons though, we sometimes choose the median of the “center-

of-mass relaxed” y coordinates as the y-coordinates for a column of printed targets. 

 

Background Correction 

In order of decreasing length scale, the background signals in an OI-RD image (the   phase 

signal from the measurement of the first harmonic of the reflected laser beam in polarization 

modulation frequency) are: (1) a monotonic and nearly linear component arising from the change in 

incidence angle with respect to the scan mirror surface; (2) mechanical strain in the glass substrate 

(recall the substrate is used as a window to the flow cell); (3) inhomogeneity on the glass surface and 
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chemically functionalized surface coating; and (4) stochastic pixel-to-pixel noise. Nominally, 

backgrounds (1)-(3) are static in time and are unaffected by a reaction of the microarray. Thus, the 

simple means of background correction is to subtract an image taken before a reaction from an 

image taken after the reaction, revealing the change due only to the reaction (plus noise). However, 

in practice these backgrounds (particularly item (2)) slowly drift in time, leaving a residual 

background in the difference image that must be corrected. Furthermore, if one desires to extract 

quantitative information from a target image, these backgrounds must be corrected. Generally, our 

background correction results are more accurate and robust for difference images due to smaller 

background signals. 

We start with reducing background (1) by modeling it with a 3rd-order two-dimensional 

polynomial and subtracting it pixel-by-pixel from the image. Let us denote the original  image as 

Image-0. Because the image is large, we do not wish to perform a computationally expensive least-

squares calculation on all of the pixels. Thus, we first create a coarse-grained version of Image-0, 

which we will denote as Image-1. To obtain Image-1, we interpolate each row of pixels in Image-0 

with cubic splines, select a sparse set of regularly spaced points along the rows (e.g. one tenth of the 

original pixel density along both directions), and evaluate the interpolating functions at these new 

locations; the process is then repeated for the other direction (pixel columns). On Image-1, we then 

apply simple thresholds (global image median ± three median absolute deviations) to crudely 

segment out the strongest microarray spots and artifacts (air bubbles, scratches, dirt) remaining in the 

coarse grained image. We least squares fit the coarse grained image globally to a 3rd-order two-

dimensional polynomial, excluding the segmented pixels from the previous step. The resulting 

polynomial is then subtracted from the original image (Image-0), pixel-by-pixel, to arrive at the 

globally treated image (Image-2). This essentially removes the slow varying background (1) and 

centers the residual background (2) about zero. By using a cubic-spline interpolation instead of a 

simple averaging method for the coarse graining, we can utilize the entire image including the 

margins and thus improve the quality of this step. 
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The line profiles along the rows and columns of Image-2 (obtained after the above polynomial 

global treatment) indicate that the remaining background is well modeled locally by, for example, 

5th-order polynomials.  Thus, we next partition the image into smaller blocks (typically 2 to 5 mm on 

a side) and within each partition least-square fit a one-dimensional 5th order polynomial to each 

column and/or row in the block. However, pixels from the microarray spots and other artifacts 

erroneously affect the fit; as a result, they need to be excluded from the fit. We have employed three 

methods to this end: (A) for high signal-to-noise spots, a crude global threshold may suffice. In this 

case, we compute the median (M-2) and the median absolute deviation (MAD-2), and use M-2 ± 

3×MAD-2 to obtain a binary mask for exclusion of the microarray spots and other artifacts.  

Unfortunately, this does not always work well; (B) alternatively, we use a binary mask from global 

thresholding the differential reflectance image ( sspp RRRR   ) of the dry microarray (before 

washing) to exclude these pixels. This data is readily available, but it less convenient than other 

methods because it requires an extra registered image; (C) in practice, it is convenient to use Image-

2 and the following strategy. The signals from microarray spots of Image-2 typically have the same 

sign (i.e. all spots are positive relative to local background) and the spot diameters are no more than 

half of the center-to-center spot spacing. A grayscale morphological top hat transformation5 can be 

applied to it as follows. For every pixel, we replace the value by the minimum of all pixels within a 

square that is centered at the pixel in question and with a side width a little larger than the spot 

diameter; afterward we replace the value of a pixel with the maximum of all pixels again within the 

same sized square centered at the pixel of interest. This procedure removes the microarray spots and 

other small features (e.g. dirt and small bubbles) from Image-2 and replaces them with values close 

to the nearby background. The resulting image (Image-3) contains the background of length scales 

down to twice the size of the square. We subtract Image-3 from Image-2 to eliminate the background.  

We then find the median (M-4) and the median absolute deviation (MAD-4) of the resulting image 

(Image-4) to obtain a binary mask (thresholds set at MAD-4 ± 3×MAD-4). The mask is used to 

exclude the microarray spots and artifacts and enables us to perform within each partition the least-

square fit to a one-dimensional 5th order polynomial for each column and/or row in the block. By 
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subtracting the polynomial fit from Image-2 for each partition, we arrive at the final background-

corrected image (Image-5). This method of automatically generating a mask from the image itself 

with the top hat transformation was applied to all images acquired for this study. 

 

Spot Detection 

After the locations of spots have been determined and the background has been subtracted, it 

remains to compute the “endpoint signal” for each spot and whether the signal suggests marking the 

spot “hit”, “no reaction”, or some other appropriate classification. This means we need to segment 

spot pixels from the substrate pixels as in previous steps, but do a better job of segmenting artifact 

pixels from spot pixels. We note that, after applying the above background subtraction procedure, 

most spots can be successfully segmented from the background by globally applying thresholds 

equal to image median ± three median deviations. In general, spot signals range from the detection 

limit (i.e. the standard deviation of the noise in the unprinted region of the glass surface) up to the 

detector saturation level. In our microarray images, the spot diameters are no more than half the 

center-to-center spot spacing and we generally image a wide margin around the microarray edge to 

improve the background correction. Thus, spot pixels comprise at most ~ 20% of the image pixels.  

In the histogram of signals from all pixels, the signals from the background pixels form a Gaussian 

peak with zero mean and the signals from the spot pixels are essentially outliers (with the exception 

of spots near the limit of detection). The use of the median and the median absolute deviation allows 

the center and dispersion of the background signal distribution to be accurately estimated despite the 

variable, large outliers (i.e. spot and artifact pixels). To reduce the number of false positives while 

keeping most weak spots, we apply an improved segmentation procedure based upon local 

thresholding as follows. 

We first apply a noise-reducing filter to the image, such as a 3×3 Gaussian convolution mask 

or a 3×3 median filter. The filters reduce false positives from the stochastic noise and small 

punctuate artifacts (the latter are suppressed particularly well by the median filter), and the blurring 

of the spot edges due to filtering has little impact on spot pixel segmentation.  We then use the target 



 - 22 - 
 

readout grid to partition the microarray into rectangular boxes, each (potentially) containing a spot 

and its surrounding background. Since the spot pixels comprise no more than 20% of the pixels 

within each partition, we computed for each partition the upper and lower thresholds equal to the 

partition median (Mp) ± three median absolute deviations (3×MADp). Pixels between the thresholds 

are considered background pixels while pixels outside the thresholds are considered potential spot 

pixels. As an option, if many spot pixels are nearby but disconnected, morphological closing can be 

applied to connect them. Likewise, morphological opening can be used to eliminate isolated single 

pixels. We next go through each partition and keep only the largest connected “binary region” (the 

smaller binary regions are likely to come from noise or artifacts). We then go through the binary 

regions and keep only those with an average radius greater than a specified threshold (a good value 

can be independently measured from the original dry target image of the microarray). Finally, we 

eliminate those remaining binary regions that lie too close to the partition boundaries (because 

genuine spots should be closer to the center of the partitions). If a partition has a surviving binary 

region, then we flag the target or the spot in the partition as a “hit candidate”. The binary region is 

used as the mask to determine the spot pixel and background pixel statistics of each partition in the 

unfiltered but background corrected image. Thus, we now have a background corrected image, a 

target readout grid, a spot mask for segmenting out the spot pixels, and spot signals, which can be 

used to create useful rules for scoring “hits”. For instance, we often print replicate spots of a 

particular target in adjacent microarray addresses. We might score a particular target as a “hit” if a 

majority of the adjacent replicate spots were flagged as “hit candidates” and the median of the spot 

signals is within acceptable thresholds. 

 

Implementation of Global Curve Fitting 

We developed a global curve fitting procedure to extract kinetic parameters of the binding 

reaction model from ~10,000 binding curve sets in an efficient and automated manner. Our goal is to 

match the throughput of the data analysis to the throughput of the binding curve acquisition. After 

real-time data is collected, the data acquisition software compensates the raw signals, zeroes the 
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baselines, records the probe concentration, and records the times where association and dissociation 

measurements begin. Additionally, the software records instrumental noises from the baselines, 

endpoint signals near the completion of the association and dissociation phases, and the 

corresponding signal-to-noise ratios (endpoint signals divided by baseline noise). After acquiring 

binding curves for all probe concentrations of interest, we select the binding data files to be fit, a 

binding model, and a signal-to-noise threshold to determine which curve sets should be fit. The rest 

of the process is carried out automatically. First, binding curves from the same microarray spots (but 

typically different probe concentrations) are collected into sets.  If the median endpoint signal-to-

noise ratio of the curve set exceeds a user-set threshold, then the curve set will be fit to the binding 

model. We use the Levenberg-Marquardt algorithm6 to find reaction model parameters that 

minimize the sum of square errors (SSE) between the model and all the curves in the set 

simultaneously (global curve fitting). We observe that the instrumental noise is independent of 

endpoint signals; as a result, we weight all data points in all curves equally in the global fit. For the 

one-to-one Langmuir binding model used in this study (Eq. (2a) and Eq. (2b)), common values of 

onk  and offk  are applied to all curves in a given set (global fit parameters), while 0N  is allowed to 

vary for each curve (local fit parameter); the probe concentrations C  and dissociation starting times 

0t  were recorded for each curve at the time of data acquisition. We also restrict onk  and offk  to 

positive values. The association and dissociation portions of the binding curves are fit 

simultaneously. Initial guesses for the fit parameters are obtained from a heuristic piecewise linear 

fit of the curves. Separate linear fits of the association and dissociation measurements converge 

reliably and give order of magnitude estimates of the rate constants onk  and offk ; 0N  is also 

estimated from these fits, or alternatively, from the association-phase endpoint signal. This 

initialization method allows the iterative Levenberg-Marquardt algorithm to proceed without human 

input and independent of the units of measurement (scaling) of the time and OI-RD values.  The 

Levenberg-Marquardt algorithm iterates until the change in the sum of square errors falls below a 

threshold. To make the termination threshold independent of the signal scale, we set it equal to a 

constant (~ 6101  ) times the maximum curve endpoint signal in the set. To increase the likelihood 
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that the output parameter values give a global rather than a local minimum of the sum of square 

errors, the heuristic initial values are randomly perturbed and input to the Levenberg-Marquardt 

algorithm; the output parameter set with the smallest sum of square errors is retained.  The 

perturbations are drawn from zero-mean Gaussian distributions with standard deviations equal to the 

heuristic parameter value. In the present study, this was performed ten times per set of binding 

curves. More trials are rarely needed with the Langmuir model, keeping the time needed to fit ~ 

10,000 curve sets to ~ 1 hour using our current computer software and hardware.  Analysis time can 

be further reduced by fitting batches of curve sets in parallel using modern multi-core computer 

processors. Finally, we observe that the instrumental noise in the baseline is distributed normally, 

allowing us to estimate the uncertainties of the output fit parameters using the diagonal elements of 

the Levenberg-Marquardt output covariance matrix and the final root mean square error of the fit. 

Numerical simulations of Langmuir kinetics (Figure S-10 and Table S-2 for a reaction with 

significant dissociation and Figure S-11 and Table S-3 for a reaction with little dissociation) with 

Gaussian noise and random values of 0N  (to simulate the variability of microarray printing) 

demonstrates that our global curve fitting procedure successfully extracts meaningful values for onk , 

offk , and 0N  even for low signal-to-noise ratio (< 5) data. After curve fitting, the output value for 

the off-rate, offk , is further assessed as described below. 
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FIGURE S-10 

 
 

 

 

Simulated binding curves mimicking experimental data for mouse IgG reaction with biotin 
targets. The time interval between successive points is 25 s. The kinetic parameters are kon 
= 2 10-5 (nMs)-1 and koff = 4 10-5 s-1. Curves were calculated for probe concentrations at 
300 nM (red curves), 100 nM (green curves), 33 nM (blue curves), and 11 nM (violet 
curves). For the “Uniform Scale” panel, a scale factor of 0N  = 1.5 10-2 was assumed. 

For the “Scale A”, “Scale B”, and “Scale C” panels, random values of 0N  where drawn 

from a uniform distribution on the interval [5 10-3, 2.5 10-2] for each probe concentration. 
From highest to lowest probe concentration, the values used for “Scale A” are 1.92 10-2, 
1.62 10-2, 1.36 10-2 and 1.15 10-2; for “Scale B”, 1.52 10-2, 2.02 10-2, 1.26 10-2, and 
7.09 10-3; for “Scale C”, 1.33 10-2, 9.20 10-3, 2.41 10-2, and 1.44 10-2. For each set of 
scales, curves were calculated with additive Gaussian noise with means of zero and 
standard deviations of 5 10-5, 2 10-4, 4 10-4, 8 10-4, 1.2 10-3, 2.4 10-3, and 2.4 10-3. 
The black curves show the results of globally fitting the four simulated binding curves 
wherein kon and koff are shared fit parameters, but  is allowed to vary from curve to curve. 
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TABLE S-2:  Global fitting parameters obtained from simulated binding curves (Figure S-10). 
For each scale and noise level, the set of four simulated binding curves was globally fit wherein 
kon and koff were shared fit parameters, but γN0 was allowed to vary from curve to curve. The 
signal-to-noise ratio is calculated using SNR = 1.5 10-2/Noise, where 1.5 10-2 is the mean 
value of γN0. Noise is the standard deviation of the zero-mean additive Gaussian noise in the 
simulated data.  In this case both the fitted dissociation rate constants and the association rate 
constants are not dominated by the noise even at SNR = 6 or below. 

 
Scale Noise SNR kon (nM·s)-1 koff (s

-1) Kd (nM) 

Uniform 0  210-5 410-5 2 

 5 10-5 300 1.996 ± 0.00410-5 4.00 ± 0.0110-5 2.004 ± 0.008 

 2 10-4 75 1.97 ± 0.0110-5 3.99 ± 0.0610-5 2.02 ± 0.03 

 4 10-4 38 1.98 ± 0.0310-5 4.2 ± 0.110-5 2.11 ± 0.07 

 8 10-4 19 2.05 ± 0.0610-5 3.5 ± 0.210-5 1.7 ± 0.1 

 1.2 10-3 13 1.99 ± 0.0910-5 3.9 ± 0.410-5 2.0 ± 0.2 

 2.4 10-3 6 1.9 ± 0.210-5 5.3 ± 0.710-5 2.7 ± 0.4 

 7.5 10-3 2 1.9 ± 0.510-5 < 410-5 < 2.1 

A 0  210-5 410-5 2 

 5 10-5 300 2.004 ± 0.00310-5 4.00 ± 0.0110-5 1.997 ± 0.007 

 2 10-4 75 2.00 ± 0.0110-5 3.97 ± 0.0510-5 1.99 ± 0.03 

 4 10-4 38 1.99 ± 0.0210-5 4.0 ± 0.110-5 2.02 ± 0.06 

 8 10-4 19 1.91 ± 0.0510-5 4.1 ± 0.210-5 2.1 ± 0.1 

 1.2 10-3 13 1.92 ± 0.0710-5 3.8 ± 0.310-5 2.0 ± 0.2 

 2.4 10-3 6 2.2 ± 0.210-5 4.4 ± 0.610-5 2.0 ± 0.3 

 7.5 10-3 2 2.0 ± 0.510-5 < 3.110-5 < 1.6 

B 0  210-5 410-5 2 

 5 10-5 300 2.006 ± 0.00310-5 3.98 ± 0.0110-5 1.982 ± 0.007 

 2 10-4 75 2.02 ± 0.0110-5 4.02 ± 0.0610-5 1.98 ± 0.03 

 4 10-4 38 1.99 ± 0.0210-5 3.9 ± 0.110-5 1.95 ± 0.06 

 8 10-4 19 1.93 ± 0.0510-5 4.3 ± 0.210-5 2.2 ± 0.1 

 1.2 10-3 13 2.17 ± 0.0810-5 3.5 ± 0.310-5 1.6 ± 0.2 

 2.4 10-3 6 2.1 ± 0.210-5 3.3 ± 0.610-5 1.6 ± 0.3 

 7.5 10-3 2 2.3 ± 0.510-5 4 ± 210-5 1.6 ± 0.9 

C 0  210-5 410-5 2 

 5 10-5 300 1.999 ± 0.00410-5 4.02 ± 0.0210-5 2.011 ± 0.009 

 2 10-4 75 2.03 ± 0.0210-5 4.03 ± 0.0610-5 1.98 ± 0.04 

 4 10-4 38 2.06 ± 0.0410-5 3.7 ± 0.110-5 1.79 ± 0.07 

 8 10-4 19 1.93 ± 0.0710-5 4.6 ± 0.210-5 2.4 ± 0.2 

 1.2 10-3 13 2.0 ± 0.110-5 4.1 ± 0.410-5 2.0 ± 0.2 

 2.4 10-3 6 1.9 ± 0.210-5 3.7 ± 0.710-5 1.9 ± 0.4 

 7.5 10-3 2 1.5 ± 0.510-5 1.0 ± 0.210-5 7 ± 3 
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FIGURE S-11 

 
 

 

 

Simulated binding curves mimicking the anti-phenobarbital data. The kinetic parameters 
used are kon = 1 10-5 (nMs)-1 and koff = 8 10-7 s-1. All other simulation parameters are 
the same as for Figure S-10. 
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TABLE S-3:   Global fitting parameters obtained from the simulated anti-phenobarbital binding 
curves in Figure S-11. For each scale and noise level, the four simulated binding curves were 
globally fit wherein kon and koff, were shared fit parameters, but γN0 was allowed to vary from curve 
to curve. The signal-to-noise ratio is calculated using SNR = 1.5 10-2/Noise, where 1.5 10-2 is the 
mean value of γN0. Noise is the standard deviation of the zero-mean additive Gaussian noise in the 
simulated data. It is clear that in this case study, the fitted dissociation rate constants are dominated 
by the noise even with SNR < 300, while the fitted association rate constants are not. 

 

Scale Noise SNR kon (nM·s)-1 koff (s
-1) Kd (nM) 

Uniform 0  110-5 810-7 0.08 

 5 10-5 300 1.003 ± 0.00210-5 5 ± 210-7 0.05 ± 0.02 

 2 10-4 75 9.92 ± 0.0810-6 < 1.010-6 < 0.11 

 4 10-4 38 9.8 ± 0.210-6 3 ± 110-6 0.3 ± 0.1 

 8 10-4 19 1.06 ± 0.0310-5 < 4.410-6 < 0.42 

 1.2 10-3 13 9.2 ± 0.410-6 < 6.010-6 < 0.65 

 2.4 10-3 6 1.0 ± 0.110-5 < 1.410-5 < 1.4 

 7.5 10-3 2 8 ± 210-6 < 3.910-5 < 5 

A 0  110-5 810-7 0.08 

 5 10-5 300 9.99 ± 0.0210-6 9 ± 110-7 0.09 ± 0.01 

 2 10-4 75 1.000 ± 0.00710-5 1.5 ± 0.610-6 0.15 ± 0.06 

 4 10-4 38 1.00 ± 0.0110-5 < 1.710-6 < 0.17 

 8 10-4 19 9.8 ± 0.310-6 < 3.410-6 < 0.35 

 1.2 10-3 13 1.02 ± 0.0410-5 < 4.810-6 < 0.47 

 2.4 10-3 6 8.9 ± 0.710-6 < 1.010-5 < 1.2 

 7.5 10-3 2 9 ± 210-6 < 3.410-5 < 3.8 

B 0  110-5 810-7 0.08 

 5 10-5 300 9.96 ± 0.0210-6 1.0 ± 0.110-6 0.10 ± 0.01 

 2 10-4 75 9.91 ± 0.0710-6 1.9 ± 0.610-6 0.19 ± 0.06 

 4 10-4 38 1.00 ± 0.0210-5 < 2.010-6 < 0.20 

 8 10-4 19 1.02 ± 0.0310-5 < 4.010-6 < 0.40 

 1.2 10-3 13 1.04 ± 0.0510-5 < 6.010-6 < 0.58 

 2.4 10-3 6 1.04 ± 0.0910-5 < 1.110-5 < 1.1 

 7.5 10-3 2 1.4 ± 0.410-6 < 3.810-5 < 2.8 

C 0  110-5 810-7 0.08 

 5 10-5 300 9.98 ± 0.0210-6 9 ± 210-7 0.10 ± 0.02 

 2 10-4 75 9.98 ± 0.0910-6 < 1.210-6  < 0.12 

 4 10-4 38 9.7 ± 0.210-6 < 2.510-6 < 0.26 

 8 10-4 19 9.7 ± 0.410-6 < 4.910-6 < 0.51 

 1.2 10-3 13 1.09 ± 0.0610-5 < 7.210-6 < 0.66 

 2.4 10-3 6 1.0 ± 0.110-5 < 1.510-5 < 1.5 

 7.5 10-3 2 6 ± 210-6 < 4.010-5 < 6.3 
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Estimation of an Upper Bound for the Dissociation Rates of High-Affinity Binders 

A most important use of kinetic rate constants obtained from real-time binding curves is the 

determination of the equilibrium association constant Ka, given by Ka = kon/koff. Ka is the measure of 

the binding affinity between a probe and a target.  Often the difference in Ka comes mainly from the 

difference in koff rather than kon. That is, high-affinity binding reactions have low values of koff and 

vice versa. 

For reactions with equilibrium association constants Ka larger than 10 nM-1, (i.e., Kd less than 

0.1 nM), we only report the 68% confidence upper bounds (the Langmuir kinetic parameters must be 

nonnegative). The reason is as follows: When the change in optical signal due to probe dissociation 

over the observation time of dissociation phase (60 minutes in this experiment) is less than the 

background noise in the signal, the dissociation portion of the binding curve is essentially flat and as 

a result koff deduced from the curve-fitting is less than its standard deviation (determined by the noise 

from the curve-fitting). In this case, it is only sensible to use the standard deviation of koff to set an 

upper bound for koff. We next derive a simple algorithm for finding such an upper bound for the 

dissociation rate (and in turn the lower bound for the equilibrium association constants Ka). It is a 

function of the signal-to-noise ratio, the time duration of dissociation phase, and the data-sampling 

rate. This notion of establishing an upper bound for koff and in turn, an upper bound for Ka from 

experimental data applies to analysis of real-time binding curves obtained by other label-free 

techniques.  

For binding curve measurements, an observation time up to an hour is typical.  In comparison, 

the time for 10% of the bound probes to dissociate from the targets is 0.1/koff. For high-affinity 

reactions, 0.1/koff can be hours or even days. This poses a significant challenge for high-throughput 

binding curve measurement as the dissociation reaction observation time will need to be much less 

than 0.1/koff. In these cases, the dissociation portion of the binding curves will be more or less flat.  

Because the noise in the dissociation data is inevitable, the extraction of koff can be dominated by the 

noise, namely, the uncertainty of koff, rather than the fitting parameter. If the signal-to-noise ratio is 

too low, koff from the fitting routine may vary by orders of magnitude, depending on the fitting initial 
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conditions and the termination threshold. Furthermore, the uncertainty in the fitted koff may be larger 

than the fitted koff itself, indicating that the latter is meaningless and the former sets a meaningful 

upper bound for koff. We show that an upper bound for koff is given by 

 

 
  NTt

koff 



0

max,

32




,  (S-3) 

 

where T  is the observation time for the dissociation phase of the binding reaction, N  is the number 

of evenly spaced measurement points of the dissociation curve,  0t  is the observed OI-RD signal 

at 0tt   (the beginning of the dissociation phase), and   is the standard deviation of the noise in the 

OI-RD signal. We note that T , N , and  0t  are readily available from the measurements. The 

instrumental noise   can be obtained from a reference baseline acquired before the association 

reaction begins. This relationship is also useful for designing dissociation experiments to achieve a 

particular upper bound, as discussed later. 

In this study, we measured ~ 10,000 antibody-antigen interactions with the dissociation curves 

mostly flat during one-hour observation of the dissociation phase.  Let the parameter values from the 

global curve be fit,onk  and fit,offk  and the respective uncertainties be on  and off . In a global curve 

fitting, these values are common to all the curves in the fitted set. The corresponding equilibrium 

dissociation constant is calculated as fit,fit,fit, onoffd kkK   with the uncertainty given by 

   2fit,
2

fit,fit, ononoffoffdd kkK   . We assume that the fit adequately describes the data such 

that the root mean square error (RMSE) evaluated using the fitting parameters is approximately 

equal to the instrumental noise, RMSE , and thus ononon kk  fit,  is a reasonable estimate of 

the association rate constant.  If there is a significant decay beyond the noise during the dissociation 

phase, then offoffoff kk  fit,  is a good estimate for the dissociation rate; otherwise, only an upper 

bound can be established.  To distinguish between these two cases, we calculate values of  i
offk max,  

using Eq. (S-3) for each curve Mi ,,1  (where M is the number of binding curves in a set used in 

the global fit). In these calculations, we approximate   using the RMSE calculated for the curve 
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under consideration. For each curve we then determine a value of  i
offk  such that    i

off
i

off kk max,  if 

 i
offoff kk max,fit,  , otherwise  

fit,off
i

off kk  . We assign   M

i

i
offoff kk

1best, min


  and fit,best,best, onoffd kkK  . If 

fit,best, offoff kk  , we report offoffoff kk  best,  and ddd KK  best, ; otherwise we report 

best,offoff kk   and best,dd KK  . 

We now consider some limiting cases.  If all binding curves exhibit significant decay beyond 

the noise level, we naturally have  
fit,off

i
off kk   for all the curves. This is because  i

offk max,  is calculated 

from the fit RMSE for each curve and thus  i
offoff kk max,fit,  . If all the binding curves in the 

dissociation phase are essentially flat, we arrive at   M

i

i
offoff kk

1max,best, min


 . Since the values of 

 i
offk max,  are upper bounds for the true value of offk , it is sensible to report the smallest of all.  In this 

situation, the value for best,offk  is determined by the curve with the highest signal-to-noise ratio 

(    0~SNR t ) since the other parameters (T  and N ) are usually the same from curve to curve.  

In general, some  i
offk  are fit values and some are upper bounds. Clearly, if the minimum value of a 

mixed set is a fit value, then this fit value is self-consistent with upper bound values present in the 

set and therefore our prescription gives a sensible answer. If the minimum value of a mixed set is an 

upper bound, the interpretation needs caution. In this case, the data should be examined to see if 

there is a curve that is poorly described by the fit model due to experimental artifacts.  The 

questionable curves should be corrected or eliminated and the fit and the subsequent analysis should 

be reapplied. Lastly, we note that our prescription provides robust upper bounds even in the presence 

of uncorrected experimental artifacts in the data.  This is true because the RMSE value used in the 

prescription will generally be larger than the true value of the stochastic instrumental noise   due to 

the artifacts. Numerical demonstrations of the validity of the prescription are provided with 

simulated Langmuir binding data with Gaussian noise in Figure S-10, Figure S-11, Table S-2, and 

Table S-3. 
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Derivation of the Upper Bound max,offk  for Dissociation Rate Constant 

Here we derive Eq. (S-3) presented in the previous section. We also discuss the application of 

this equation to designing dissociation experiments.  According to Eq. (2b), the OI-RD signal during 

the dissociation reaction ( 0tt  ) is given by 

 

      0

0
ttkoffett     (S-4) 

 

where 

     0100
tkCk

offon

on offone
kCk

Ck
Nt 


  . (S-5) 

We now assume that offktt 10   during the entire length of the dissociation phase.  The hallmark 

of this condition is that the observed decay is linear. Thus Eq. (S-4) can be approximated as 

   0ttbat  , where  0ta   and   offktb  0 . The dissociation rate abkoff   can 

be obtained from a linear least squares fit of the dissociation data6. The linear least squares fit also 

yields estimates for the slope uncertainty  b  and intercept uncertainty  a , giving the 

uncertainty in the dissociation rate as        22 bbaakk offoff   , by propagation of errors. 

Let N  be the number of measurements (readouts) made during the dissociation reaction, t  be the 

time between successive measurements (readouts), and tNT  )1(  be the total duration of 

observation. Furthermore, let     be the uncertainty in each OI-RD observation (i.e. the 

instrumental noise). For large values of N (i.e. 20~N ), the standard equations for the 

uncertainties (see, for example, Eq. 6.23 in Reference 6) reduce to      NTb  32  and 

    Na  2 . Therefore the uncertainty in the dissociation rate constant is 
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If  offoff kabk  , only  offk  is meaningful and sets an upper bound for the true value of offk  

as 

 
  NTt

koff 



0

max,

32




.  (S-7) 

It is notable that all the parameters in this equation are obtainable from the data. If offon kCk  , 

   0100
CtkoneNt    in Eq. (S-7). Since 0N  is the OI-RD signal at the equilibrium, a useful 

definition of the signal-to-noise ratio of the data is  0SNR N . In this case, Eq. (S-7) can be 

rewritten as 

 

  02
3

1SNR

32
max, Ctkoff

oneT

t
k 


 .  (S-8) 

This form is useful for designing dissociation experiments. A smaller value of max,offk  gives a tighter 

bound on offk  and therefore Eq. S-8 makes it clear that short sampling periods, long observation 

times, and high signal-to-noise ratios are desirable, as intuitively expected. The smallest achievable 

sampling period t  is limited by the scanning hardware and the number of microarray spots to be 

read out; thus t  is not very convenient for tuning max,offk . It should be pointed out that smoothing 

the data, such as by convolution or median filters, to increase the apparent SNR does not reduce 

max,offk . This is because smoothing operations also increase the effective value of t  by a factor of 

the half-width of the smoothing window, canceling out the gain in SNR (which scales roughly as the 

square root of the window half-width). Therefore tuning max,offk  through SNR must come through 

boosting the signal, such as by increasing the surface density of binding sites 0N . Additionally, one 

can boost the signal by choosing probe concentration C or association reaction duration 0t  to bring 

the association signal near equilibrium ( 0~0Ctkone ). Lastly, one can choose to observe the 

dissociation reaction for a longer time.  Since t  is a constant for all practical purposes, Eq. (S-8) 

shows that 2
3

max,


 Tkoff . For example, a 100-fold decrease in max,offk  requires a 20-fold increase in 

observation time. 
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